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The proposed method allows for an extended analysis of the wave analysis, internal powers, and

acoustic performance of anisotropic poroelastic media within semi-infinite multilayered systems

under arbitrary excitation. Based on a plane wave expansion, the solution is derived from a first

order partial derivative as proposed by Stroh. This allows for an in-depth analysis of the mecha-

nisms controlling the acoustic behaviour in terms of internal powers and wave properties in the

media. In particular, the proposed approach is used to highlight the influence of the phenomena

intrinsic to anisotropic poroelastic media, such as compression-shear coupling related to the mate-

rial alignment, the frequency shift of the fundamental resonance, or the appearance of particular ge-

ometrical coincidences in multilayered systems with such materials. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4942443]

I. INTRODUCTION

It is well-known that most engineered poroelastic

materials are inherently anisotropic due to the involved

manufacturing processes,1–5 and recent studies on multi-

layered finite-sized systems6 have shown that anisotropy

can significantly alter the dynamic behaviour of poroelas-

tic materials. While the theoretical foundation for model-

ling anisotropic materials was established by Biot,7–10

methods for efficiently predicting their vibro-acoustic

behaviour within complex structures are still subject to

research.

Recent progress on generally anisotropic materials

includes finite element approaches,11–15 and semi-analytical

formulations for the analysis of seismic and electromagnetic

waves.16–18 However, to predict the physical phenomena

governing the behaviour of finite-sized anisotropic porous

media in multilayered configurations is still an open ques-

tion. In such cases, the numerical modelling including poroe-

lastic media involves a trade-off between complexity and

computational efficiency. In particular, predicting the physi-

cal phenomena governing the behaviour of arbitrarily aniso-

tropic porous media within multilayered configurations

remains a challenge.

In addition, as a consequence of the lack of computa-

tional tools, the interpretation of the mechanical and energy-

dissipating phenomena has not been systematically

addressed for layers of finite thickness. For geophysical

applications, the works by Carcione18,19 discussed quadratic

quantities associated with internal powers and energy propa-

gation in the case of acoustic waves anisotropic porous

media.

Regarding wave behaviour of multilayered systems

including porous cores, Khurana et al.20 extended the

Transfer Matrix Method (TMM) for transversely isotropic

porous materials by analytically solving the dispersion rela-

tion governing the wavenumbers of the waves travelling in

the medium. Allard et al.3 extended the research of the wave

characteristics of transverse isotropic porous media whose

plane of symmetry differs from the plane of incidence by

applying a coordinate transformation but did not propose the

transfer matrix for such media.

A TMM solution to the equations governing a fully ani-

sotropic poroelastic medium has so far not been realised.

Albeit theoretically tractable, this would lead to an eighth

order algebraic equation in the wavenumbers, which has no

known analytical solution. Furthermore, the derivation of the

individual terms of the transfer matrix itself is prone to

errors, and thus impractical.

The present paper proposes a method based on an

expansion in plane waves, which forms the basis for a TMM

model of the dynamics of a multilayered structure compris-

ing arbitrarily anisotropic poroelastic layers. It allows for a

detailed analysis of the mechanisms controlling the acoustic

response of multilayered systems in terms of internal powers

and wave properties in anisotropic poroelastic layers. The

formulation consists in writing the equations governing the

medium as a first order system in the selected state varia-

bles,21–23 which appear in the boundary or coupling condi-

tions between layers.

The paper is organised as follows. Sec. II introduces the

plane wave solution and the governing equations in aniso-

tropic poroelastic media. Sec. III presents the proposed

approach to the calculation of quadratic quantities, such as

dissipative and kinetic powers in the media. In Sec. IV, the

application to a multilayer system including a layer of aniso-

tropic poroelastic material is shown. An interpretation of the

results in terms of waves is provided in Sec. V, where some

aspects of the acoustic response are explained in terms of the

kinetic powers and the dominant wave characteristics.a)Electronic mail: jppm@kth.se

0021-8979/2016/119(8)/084907/11/$30.00 VC 2016 AIP Publishing LLC119, 084907-1
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II. PLANE WAVE APPROACH FOR ANISOTROPIC
POROUS MEDIA

A. General considerations

A multilayered system composed of homogeneous

layers separating two semi-infinite fluid media is considered,

as illustrated in Fig. 1, and where also the Cartesian coordi-

nate system f0; x; y; zg is defined. The system is excited by

an incident acoustic plane wave of unit amplitude, positive

in the z-direction, and defined by two angles h1 and h2 of

incidence.

Throughout this paper, plane wave expansions are con-

sidered with a harmonic excitation at circular frequency x.

Hence, any dependent field variable v̂ (e.g., displacement

and stress) can be written as

v̂ðx; y; z; tÞ ¼ vðz;xÞeiðxt�kxx�kyyÞ; (1)

where vðz;xÞ denotes the complex amplitude of the corre-

sponding physical field and kx and ky are the components of

the wave vector prescribed by the incident plane wave. As

the spatial dependencies with respect to x and y, and the time

dependence, are common to all fields and imposed by the

incident wave, these will be omitted in order to simplify the

expressions.

For an individual material layer, the amplitudes of the

physical field variables required to describe its boundary or

coupling conditions, form a state vector sðzÞ. The remaining

field amplitudes may be calculated as a linear combination

of the fields in the state vector.

For any given individual layer, see Fig. 1, the linear

equations of motion are written in terms of the state variables

sðzÞ on the form, originally proposed by Stroh21–23

@s zð Þ
@z
¼ �a s zð Þ; (2)

where a is a square matrix that depends on the material pa-

rameters, the frequency, and the wavenumbers of the inci-

dent wave, kx and ky. The variation of the state variables

along z is thus entirely governed by matrix a.

A direct solution of Eq. (2) may be obtained by inte-

grating it over a distance z� z0 smaller than the thickness

of the layer, where z0 is an arbitrary point in a layer. This

leads to

sðzÞ ¼Mðz; z0Þ sðz0Þ; (3)

where Mðz; z0Þ is the transfer matrix of the medium between

z and z0. The latter depends on the constitutive parameters,

such that

Mðz; z0Þ ¼ e�ðz�z0Þa; (4)

where e½:� is the matrix exponential operator.

A local coordinate system is introduced for each layer,

aligned with the global coordinate system, with z¼ 0 at z0.

An alternative way of expressing the transfer matrix

may be obtained by a transformation into the eigenspace of

Eq. (2). The eigenvalue problem for a reads

a ¼ UCU�1; (5)

where U and C are, respectively, a matrix whose columns

are the eigenvectors and a diagonal matrix with the eigenval-

ues. Introducing a change of variables,

sðzÞ ¼ U wðzÞ (6)

and substituting this into Eq. (2) yields

@w zð Þ
@z
¼ �C w zð Þ; (7)

which is a system of uncoupled equations due to the diagonal

nature of C. The solution in the eigenspace can then be

expressed as

wðzÞ ¼ e�zCwð0Þ: (8)

Transforming back to physical variables

sðzÞ ¼ Ue�zCU�1 sð0Þ; (9)

which describes the wave propagation from 0 to z in terms of

the eigenvectors and eigenvalues of a.

Rewriting Eq. (8) in the form

wðzÞ ¼ KðzÞq; (10)

where q is a vector containing the contribution of each wave

in the layer, and KðzÞ ¼ e�Cz describes the propagation in

the layer, it follows that

sðzÞ ¼ UKðzÞq: (11)

The dimensions of U and KðzÞ are ðn� nÞ, while q has

dimension ðn� 1Þ, where n is the total number of waves

existing in the medium.

Other wave properties which can be useful for the physi-

cal interpretation of the material behaviour, and that may be

calculated from (5) are the wave slowness si, wave attenuation

si, and wavelength ki of the ith wave. Introducing ikz;i ¼ Ci

can be written asFIG. 1. Multilayered setup.
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si ¼ Re
1

Vi

� �
; (12)

si ¼ �x Im
1

Vi
;

� �
; (13)

ki ¼ Re
2p
kz;i

� �
; (14)

where Vi ¼ x=kz;i is the phase velocity of the ith wave.

From a known solution, the wave contributions, q can

be determined by projecting the corresponding state varia-

bles in the eigenspace, as

q ¼ U�1 sð0Þ: (15)

Up to this point, the derivations are applicable to any

type of homogeneous media, both isotropic and anisotropic.

The aim of the present work is to generalise the plane wave

approach to the case of anisotropic poroelastic media with an

arbitrary orientation of the incident wave.

B. Governing equations for a poroelastic layer

The porous material is modelled with the fus; utg for-

mulation proposed by Dazel et al.24 The expressions for ani-

sotropic open-cell poroelastic media are derived from the

formulations in H€orlin and G€oransson13

r � r̂s ¼ �x2~qsu
s � x2~qeq~cut; (16)

�rp ¼ �x2~qeq~cus � x2~qequt; (17)

r̂s ¼ Ĥ
s
�s; (18)

p ¼ � ~Keqr � ut; (19)

ut ¼ / uf þ ð1� /Þus; (20)

where us and uf ; and ut are, respectively, the vector of dis-

placement fields of the solid and fluid phases, and the total

displacement fields vector; �s and rs are the porous solid

Cauchy strain and stress vectors; and p is the acoustic pres-

sure. The scalar quantities / and ~Keq are, respectively, the

porosity of the foam and the bulk modulus of the saturating

fluid modified by the thermal exchanges with the solid phase

of the porous medium.

The porous materials are here considered fully aniso-

tropic, thus the complex terms ~qs; ~qeq, and ~c are second order

symmetrical tensors. Ĥ
s

is the Hooke’s tensor of the solid

phase of the material, which takes the form of a fourth order

symmetrical tensor.5 Furthermore, the porous medium is con-

sidered anelastic and is modelled by means of an augmented

Hooke’s law based on a fractional derivative approach5,25

The anisotropy is also reflected in the flow resistivity

rflow, which is a second order symmetrical tensor, from

which are derived several porous parameters, see Refs. 13,

20, 24, and 26 for isotropic media, which have been

extended to anisotropic.25

To solve for the acoustic response under the plane wave

assumption in Eq. (1), 8 independent amplitudes of the corre-

sponding physical field variables are required. As indicated

above, these are in the present work chosen from the

coupling conditions for a specific porous layer, which in the

present formulation involve continuity in the solid displace-

ments (3 variables), the normal total displacement (1 vari-

able), the surface solid normal traction (3 variables), and the

acoustic pressure (a scalar quantity). Together these form the

set of state variables

sðzÞ ¼ fus
xðzÞ; us

yðzÞ; us
zðzÞ; ut

zðzÞ;
…r̂s

zzðzÞ; r̂s
yzðzÞ; r̂s

xzðzÞ; pðzÞgT: (21)

The remaining unknowns form a secondary set of variables

s0ðzÞ ¼ fut
xðzÞ; ut

yðzÞ; r̂s
xxðzÞ; r̂s

yyðzÞ; r̂s
xyðzÞg

T: (22)

C. Waves in anisotropic poroelastic media

In an isotropic poroelastic material, the Biot theory pre-

dicts four pairs of waves, namely, two compressional waves

of different velocities (P1 and P2), and one shear wave with

two perpendicular planes whose common axis is the propa-

gation direction (S1 and S2). Similarly, for a transversally

isotropic material, there are four pairs of waves which are

polarised in such way that two quasi-compressional waves

(qP1 and qP2), one quasi-shear wave (qS), and one shear

wave (S) may be identified.

However, for a fully anisotropic porous material, there

are in the general case 8 different waves that are neither

characterised by compressional nor shear deformation,19 as a

wave can be polarised in any direction of space.

Thus, other means of wave classification are required.

Here, the wave types controlling the response of a confined

anisotropic porous medium are labelled following Eq. (11),

as all 8 waves in the media have different wavenumbers,

according to

wi ¼ /i Ki; i ¼ 1;…; 8; (23)

with /i the eigenvector and Ki the eigenvalue of the ith wave.

A well known intricacy of wave propagation in aniso-

tropic media is that, in Eq. (23), both /i and Ki depend on

direction of propagation as well as the orientation of the ma-

terial alignment in space. As a consequence, there will be a

different set of wave properties for each material orientation.

D. Matrix a for anisotropic poroelastic media

One of the main contributions of the present work is the

derivation of the a matrix in Equation (2) corresponding to

the state vector sðzÞ in Eq. (21), for a generally anisotropic

poroelastic material.

As part of this, the linear relations between the variables

in s0ðzÞ and sðzÞ need to be established in order to calculate

the partial derivatives of the fields in the state vector.

Assuming the ordering of the fields in the state vector in

Eq. (21), a numerical convention is used for the referencing

of rows and columns in matrices. For a given matrix Rjk:l
i:j ,

the subscripts refer to the lines i to j, and the superscripts

refer to the columns k to l. The symbol ½:� alone corresponds

to all the elements in a row or column. An index alone corre-

sponds to an individual row or column.

084907-3 Parra Martinez et al. J. Appl. Phys. 119, 084907 (2016)
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Before going into the details of the derivations, some

straightforward Boolean operators will be defined.

The stress components appearing in the state variable

vector are given by

r̂zzðzÞ
r̂yzðzÞ
r̂xzðzÞ

8><
>:

9>=
>; ¼ Tr̂sðzÞ; (24)

where Tr̂ is the Boolean matrix defined as

Tr̂ ¼
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

2
64

3
75: (25)

In a similar way, the solid displacement field compo-

nents can be rewritten as a function of the state vector as

usðsÞ ¼ Tus

sðzÞ; (26)

where Tus

is defined by

Tus ¼
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

2
64

3
75: (27)

Finally, the pressure is given from the state variable vec-

tor as

pðzÞ ¼ TpsðzÞ; (28)

where the Boolean matrix is

Tp ¼ ½0 0 0 0 0 0 0 1�: (29)

1. Gradient of solid displacements, ›
›z usðzÞ

To determine

@

@z
us zð Þ ¼ aj:1:3 s zð Þ; (30)

the relation between the normal solid strain and the corre-

sponding stress components will be derived. The Cauchy

strain vector �sðzÞ, in Voigt notation, may be expressed as

�s zð Þ ¼

�ikx 0 0

0 �iky 0

0 0 0

0 0 �iky

0 0 �ikx

�iky �ikx 0

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

us zð Þ þ

0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0

2
6666664

3
7777775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
B

@

@z
us zð Þ: (31)

Finally, to relate the stresses to the strains, Eqs. (25),

(26), and (31) can be substituted into Eq. (18), such that the

aj:1:3 is obtained as

aj:1:3 ¼ ½Ĥ
sj:3:5 B��1½Tr̂ � Ĥ

sj:3:5 ATus �: (32)

2. Gradient of total displacement,
›ut

z ðzÞ
›z

In a similar manner, Eq. (19) provides the term

@ut
zðzÞ=@z which is associated to the 4th row of a

@ut
z zð Þ
@z

¼ aj:4 s zð Þ: (33)

The Cartesian components of the total displacement

fields utðzÞ may be obtained from Eq. (17) as

ut zð Þ ¼ 1

x2
~qeq½ ��1$p zð Þ � ~cus zð Þ: (34)

To express utðzÞ as a function of the state vector, the (3� 8)

matrix Tut

is introduced

utðzÞ ¼ Tut

sðzÞ: (35)

The z-component of the total displacement vector, ut
zðzÞ, is

given by the 4th field in sðzÞ, and thus the 3rd row of Tut

is

Tut j:3 ¼ ½0 0 0 1 0 0 0 0�; (36)

and ut
xðzÞ and ut

yðzÞ from

Tut j1:2
1:2 ¼ �~cj1:2

1:2 ; (37)

and

Tut j81:2 ¼ �½~qeq��1j1:2
1:2

ikx=x2

iky=x2

� �
: (38)

Thus, using Eqs. (29) the 4th row of a may be expressed as

aj:4 ¼ �
1

~Keq

Tp þ ikxTut j:1 þ ikyTut j:2: (39)

3. Gradient of Cauchy stresses, ›
›z r̂s

iz, for i5z ;y ; x

The partial derivative over z of the solid stress compo-

nents in the sðzÞ, corresponding to the 5th, 6th, and 7th rows

of a, is obtained from

@

@z

r̂zz zð Þ
r̂yz zð Þ
r̂xz zð Þ

8><
>:

9>=
>; ¼ aj:5:7 s zð Þ: (40)

From the left-hand side of Eq. (16)

r � r̂s zð Þ ¼ A0r̂s zð Þ þ B0
@

@z
r̂s zð Þ; (41)

where

A0 ¼
�ikx 0 0 0 0 �iky

0 �iky 0 0 0 �ikx

0 0 0 �iky �ikx 0

2
4

3
5; (42)

and

B0 ¼
0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

2
4

3
5: (43)
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Substituting Eqs. (41) and (31) in Eq. (16), the term aj:5:7 can

be expressed as

aj:5:7 ¼ ½B0j
3:5
: �
�1½�x2~qsT

us � x2~qeq~cTut

�A0Ĥ
sðATus þ Baj:1:3 Þ�: (44)

4. Gradient of pressure, ›pðzÞ
›z

What remains is the relation

@p zð Þ
@z
¼ aj:8 s zð Þ; (45)

which can be directly determined by inserting Eqs. (26) and

(35) into Eq. (17). Thus, the term aj:8 in Eq. (45) may be

expressed as

aj:8 ¼ �x2~qeqj:3~cTus � x2~qeqj:3 Tut

: (46)

III. DISSIPATED AND KINETIC POWERS

To calculate the internal powers P of a layer, the inte-

gral associated with the scalar product of two complex quan-

tities f(z) and g(z) has to be calculated according to

P ¼
ðd

0

f �ðzÞgðzÞdz; (47)

where d is the thickness of the layer and f �ðzÞ denotes the

complex conjugate of f(z). An advantage of the proposed

method is that f(z) and g(z) each may be expressed as a linear

combination of the state variables in sðzÞ, e.g. f ðzÞ ¼ Tf sðzÞ
and gðzÞ ¼ Tg sðzÞ. Similarly, their spatial derivatives may

be expressed as a linear combination of a, see, for example,

Eq. (45).

To facilitate the calculations of the required integrals, fol-

lowing Eq. (11), the state variable amplitudes are expanded in

terms of the wave contributions q, the polarisation vectors U,

and the diagonal wavenumber exponential matrix KðzÞ. Thus,

the integration over two arbitrary points can be rewritten in

terms of wave properties and contributions

P ¼ q�
ðd

0

K�ðzÞU�Tf�TgUKðzÞdz

" #
q: (48)

Introducing NfPg ¼ Tf �Tg, where the matrix N holds

the contribution of the different state variables involved

P ¼ q�
ðd

0

K�ðzÞU�NfPgUKðzÞdz

" #
q: (49)

It is important to note that the quadratic factor NfPg
depends on the nature of the medium, but not on its boundary

conditions or the layer thickness.

As an example, a partial contribution to the time-

averaged dissipated power, by shear deformation in the xz-

plane of an anisotropic poroelastic material layer of thickness

d placed at the origin of a Cartesian coordinate system, is

given by

Ps
xz ¼ Re

ix
4

ðd

0

r̂s�
xz zð Þ�s

xz zð Þdz

( )
; (50)

where r̂s
xzðzÞ and �s

xzðzÞ are, respectively, the shear stress and

shear strain in the solid frame of the poroelastic layer in the

x0z-plane. The shear strain �s
xzðzÞ is given by

�s
xz zð Þ ¼

1

2
�ikxus

z zð Þ þ
@us

x zð Þ
@z

� �
: (51)

As can be seen in Eq. (21), the fields r̂s
xz; us

xðzÞ, and us
zðzÞ

are included in the state vector sðzÞ. As a consequence of the

wave expansion approach in Eq. (11), the state variable ampli-

tude us
zðzÞ may be computed by multiplying Eq. (11) by a the

3rd row of the Boolean matrix Tus

in Eq. (26)

us
zðzÞ ¼ Tus j:3 UKðzÞq: (52)

The shear stress r̂s
xz is then expressed via the 3rd row of the

Boolean matrix Tr̂s

in Eq. (25)

r̂s
xzðzÞ ¼ Tr̂s j:3 UKðzÞq: (53)

In a similar way, the partial derivative over z of uxðzÞ may

be computed by introducing Eq. (11) into Eq. (2), and by mul-

tiplying with 1st row of the Boolean matrix Tus

in Eq. (26)

@us
x zð Þ
@z

¼ �Tus j:1aUK zð Þq: (54)

Thus, Eq. (50) can be rewritten as a function of the ex-

ponential diagonal matrix of wavenumbers KðzÞ, the polar-

isations U, and the wave contributions q, as

Ps
xz ¼ Re q�

ðd

0

K�ðzÞU�NfPs
xzgUKðzÞdz

" #
q

( )
; (55)

with

N Ps
xz

	 

¼ ix

4
Tr̂s

j:3
h i�

ikxTus j:3 þ Tus j:1 a
� �

: (56)

A similar procedure may be thus be applied in order to

obtain the internal power associated to any other pair of

complex quantities f(z) and g(z).

IV. APPLICATION AND RESULTS

A. Study case

To illustrate the application of the proposed method, a

sandwich panel with two solid face sheets and a single po-

rous core, i.e., Fig. 1 with N¼ 3, is investigated. The poroe-

lastic core is anisotropic in the elastic and the acoustic

properties, all sharing the same principal directions, and the

influence of the directional properties is illustrated through a

comparative study of different orientations of the porous ma-

terial coordinate system.

The face sheets are 1 mm-thick isotropic aluminium

layers, and the core material is an anisotropic anelastic

melamine foam of thickness dcore ¼ 88 mm. The acoustic
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performance will be evaluated in terms of the transmission

loss (TL) of the panel which is obtained from the pressure

radiated by the solid face sheet opposite to the surface

excited by the incident acoustic wave. The method to com-

pute the TL is given in Ref. 22, where it is detailed how the

transmitted pressure field can be evaluated.

Table I summarises the values of the material parame-

ters used in the application. The anisotropic material parame-

ters of the melamine foam in the core are taken from

recently published works and are here given in the material

coordinate system of the foam ð0; x0; y; z0Þ, as defined in

Fig. 2. The flow resistivity tensor, was estimated by Van der

Kelen et al.27 (in Pa s m�2), as

rflow ¼
0:9727 0 0

1:0655 0

sym: 1:1318

2
4

3
5� 104; (57)

and the Hooke’s matrix was estimated by Cuenca et al.5

(�105 Pa) as

Ĉ ¼

7:7194 3:4252 �0:0226 0 0 0

4:2782 1:1845 0 0 0

2:2155 0 0 0

1:0364 0 0

sym: 1:2368 0

1:0123

2
6666666664

3
7777777775
: (58)

The transformations used to rotate the material natural

coordinate system are detailed in Cuenca et al.5 In what fol-

lows, the angle b corresponds to the direct rotation around

the ð0yÞ axis of the material coordinate system of the foam,

see Fig. 2. Note that, in the unrotated state, the material coor-

dinate system is aligned with the global coordinate system

and the material properties are orthotropic.

To highlight the particular mechanisms related to the

dynamics of an anisotropic material in a multilayered sys-

tem, results for an isotropic equivalent core are also given.

The corresponding isotropic material parameters were

computed using the method proposed by Norris28 and are

given in Table I.

B. Transmission loss

The dynamic behaviour will be discussed in three

defined frequency ranges: low, f � ½100� 500� Hz, mid,

f � ½0:5� 1� kHz, and high, f � ½1� 5� kHz. Two different

excitations are used, one for normal incidence, h1 ¼ 0 deg;
h2 ¼ 0deg, and one for oblique incidence, h1 ¼ 45deg; h2

¼ 50deg. For the normal incidence case, the material coordi-

nate transformations are symmetric with respect to b¼ 0 rad

and b ¼ p=2 rad, while for the oblique incidence this is no

longer the case.

The TL under normal incidence is shown as a function

of frequency in Fig. 3(a) for 3 different rotations of the po-

rous material coordinate system, b ¼ ½0; p=4; p=2� rad, to-

gether with the TL of the closest isotropic equivalent

material model, and for oblique incidence in Fig. 3(b), for 4

different rotations of the porous material coordinate system,

b ¼ ½0; p=4; p=2; 3p=4� rad.

The low frequency response is for both excitations char-

acterised by resonances and anti-resonances that depend on

the rotation angle b. Similarly, the high frequency response

TABLE I. Parameters of the aluminium sheets and of the melamine foam

used for the application.

Parameter Symbol Value

Aluminium sheets

Density qe 2700 kg m�3

Young’s modulus E 7� 1010 Pa

Loss factor g 0.01

Poisson ratio � 0.3

Melamine foam

Tortuosity at 1.2

Viscous charac. length K 240� 10�6 m

Thermal charac. length K0 490� 10�6 m

Porosity / 0.99

Density of frame q1 9:2 kg m�3

Fractional derivative order â 0.33348

Relaxation frequency b̂ 812:69� 103 rad s�1

Anelastic contribution b̂ 0.29620

Isotropic equivalent foam

Young’s modulus Eiso 3:155� 105 Pa

Viscous loss factor gelastic 0.032

Poisson ratio �iso 0.285

Flow resistivity rflow
iso 1:0567� 104 Pa s m�2 FIG. 2. Global coordinate system ð0; x; y; zÞ, foam material reference system

ð0; x0; y; z0Þ, and definition of rotation angle b.
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of the multilayered system exhibits a resonant behaviour

with an apparent level of damping dependent on b.

For the normal incidence, a resonance and anti-

resonance appear in the TL at f ¼ fLF ¼ 195:7 Hz, see Fig.

3(a), for material rotations around b � p=4 rad which is nei-

ther present for the other rotations nor for the oblique inci-

dence excitation. In the medium frequency range and the

oblique incidence excitation, anti-resonances depending on

the rotation angle b may be observed.

In addition, the response predicted using the material

properties according to the closest isotropic equivalent

is very similar to the normal incidence results for b
¼ p=4 rad.

C. Kinetic powers

To analyse the complex interactions induced by the ani-

sotropic poroelastic core, the internal powers may be calcu-

lated as functions of frequency and material coordinate

rotations. As an example, from Eq. (49), the total kinetic

powers of the porous core can be calculated. The results

obtained for 3 material coordinate rotations, are shown in

Fig. 4 under normal incidence.

It can be observed that the overall kinetic power of the

porous material is predominantly governed by the motion in

z for the three material coordinate rotations. Also, the kinetic

power due to motion in y is negligible for all material rota-

tions under normal incidence. In contrast, the kinetic power

related to the motion in x has a significant contribution for

b ¼ p=4 rad, around f � fLF, whereas it has little contribu-

tion to the overall kinetic power when the material coordi-

nate system is aligned with the global, i.e., b¼ 0 rad and

b ¼ p=2 rad.

V. DISCUSSION

The focus of the present work is set on the method pro-

posed for solving the anisotropic multilayer transmission

problem and their ability to provide an interpretation of the

mechanisms governing the acoustic performance of confined

anisotropic poroelastic media dynamics. Thus, in the discus-

sion the performance as such will not be discussed except

FIG. 3. Acoustic transmission loss of

the multilayered structure excited by a

plane wave as a function of frequency;

(a) under normal incidence (h1¼0deg;
h2¼0deg), and (b) under oblique inci-

dence (h1¼45deg; h2¼50deg).

FIG. 4. Total kinetic power within the poroelastic core layer under normal incidence for different rotations of the material coordinates. Legend: red dot-dashed

line, projection on x; black dotted line, projection on y; blue solid line, projection on z. (a) b¼ 0 rad, (b) b¼p/4 rad, and (c) b¼p/2 rad.
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when used to show in which ways the method may be uti-

lised in the analysis. In particular, the dependence of the

response on the rotation angle, the underlying mechanisms

controlling the frequency shift of the fundamental resonance,

and the appearance of resonances and anti-resonances in the

low and mid-frequency ranges, will be highlighted.

A. Fundamental resonance frequency shift under
normal incidence

The strong dependence of the normal incidence TL on

the rotation angle b, see Fig. 3(a), is related to the mechani-

cal stiffness of the material in compression in the z-direction.

More specifically, it is the variation of the foam’s Hooke’s

tensor component Ĥ
s

33, as a function of b, which governs the

phase velocity of the compressional deformation. This is evi-

dent from, Fig. 5, which shows the variation of the resonance

frequency and

ffiffiffiffiffiffiffiffi
Ĥ

s

33

q
. This, together with the closely related

responses obtained using the material properties according to

the closest isotropic equivalent and b ¼ p=4 rad, will be fur-

ther discussed below.

In order to understand this behaviour, the contribution q

of each wave in the porous material to the response, see Eq.

(11), is presented in Fig. 6, together with the wave contribu-

tions of the closest isotropic equivalent, at f¼ 339.7 Hz.

Note that the response is dominated by the same set of waves

in both cases, w3 and w4, thus confirming the observed de-

pendence on Ĥ
s

33 and providing support for an explanation of

the similarities between the closest isotropic equivalent

model and the b ¼ p=4 rad. The fundamental resonance then

corresponds to the phenomenon which is characterised as a

“breathing” motion in the case of isotropic multilayered sys-

tems. Due to the anisotropy, there is a non-negligible

influence of other types of deformation waves in the poroe-

lastic medium studied in the current case, hence the term

fundamental resonance will be used in the paper.

B. Low frequency resonance and anti-resonance
under normal incidence

There is one observed response that stands out for mate-

rial rotations around b � p=4 rad and normal incidence exci-

tation. At f ¼ fLF ¼ 195:7 Hz, see Fig. 3(a), a resonance and

anti-resonance appear in the TL which are neither present in

the other cases nor for the results pertaining to the closest

isotropic equivalent. At this particular frequency and mate-

rial coordinate rotation, the displacement field in the poroe-

lastic core is dominated by a motion in the x-direction, see

Fig. 4 at f � fLF.

To further explain this, the contributions of the individ-

ual waves in Eq. (11), qi, are shown in Fig. 7(a) as a function

of the relative alignment at f ¼ fLF for the range b ¼ ½0; p=2�
rad. For angles where the material coordinate system is

aligned with the global coordinate system, i.e., b¼ 0 rad and

b ¼ p=2 rad, the w3 and w4 waves dominate the behaviour

of the layer. In contrast, for b � ½p=8; 3p=8� rad, the behav-

iour of the layer is governed by the w7 and w8 waves in the

porous medium, with some contribution of the w1; w2; w3,

and w4 waves. At the same time, the overall contribution of

the w5 and w6 waves is negligible for material coordinate

rotations.

FIG. 5. Fundamental resonance frequency of the sandwich panel under nor-

mal incident plane wave, and coefficient

ffiffiffiffiffiffiffiffi
Ĥ

s

33

q
of the poroelastic material,

as functions of b.

FIG. 6. Wave contributions at f¼ 339.7 Hz under normal incident acoustic

excitation of the different waves in the core in (left) the panel with aniso-

tropic poroelastic core for b ¼ p=4 rad, and (right) the panel with closest

isotropic equivalent poroelastic core.
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For comparison, the wave contributions in the same sys-

tem composed with the closest isotropic equivalent porous

core, for f ¼ fLF are also shown in Fig. 7(a). In this case, the

response is governed by the contributions of the waves P21

and P22, while the other waves have a negligible contribution

to the behaviour of the material under normal incidence.

C. Mid-frequency anti-resonances at oblique
incidence

For oblique incidence, anti-resonances appear in the TL

in the mid frequency range, Fig. 3(b). Although these appear

for all material coordinate rotations, they are particularly

strong for the b ¼ 3p=4 rad results. The wave contributions

qi at f ¼ fHF are shown in Fig. 7(b). For b � ½3p=8; 5p=8�
rad, the response is dominated by the w7 and w8 waves.

The effects of this unsymmetric excitation are particularly

reflected in the wave contributions at b ¼ 3p=4 rad. While

the TL at this frequency shows a similar magnitude as

b ¼ p=4 rad, see Fig. 3(b), the response is clearly controlled

by a different set of waves (w1), see Fig. 7(b).

D. Wave analysis

As previously discussed, particular waves dominate the

behaviour of the confined anisotropic poroelastic medium.

The proposed solution method may be used to characterise

these in more depth, thus, allowing for an analysis of the in-

herent physical phenomena governing the response of aniso-

tropic poroelastic materials. One such evaluation is to

calculate the amount of shear deformation a certain wave

represents for different material coordinate rotations.

This may be computed from Eq. (23), and as an example,

for normal incidence and thus kx ¼ ky ¼ 0, the ratio Xxz

between the shear strain in the xz-plane and the sum of strains

may be computed from the free waves used in the solution (11)

Xi
xz ¼

���� �xz wið ÞX
k;l¼x;y;z

�kl wið Þ

���� (59)

¼
���� Uji1
Uji1 þUji2 þ 2Uji3

����; (60)

for i ¼ 1;…; 8, and where the convention introduced in

Sec. II D is adopted.

As seen in Fig. 8, in the unrotated material states the

wave field is clearly divided into purely compressional (P)

and pure shear (S) waves. In contrast to this, for, e.g.,

b ¼ p=4 rad, all the contributing waves induce both shear

and compressional strains, which suggests a significant cou-

pling between compressional and shear deformations for this

material coordinate orientation. Note also that neither

w5; w6, S11 nor S12 are shown as they have no shear strain

component in the xz-plane under normal incidence.

The appearance of resonances and anti-resonances in the

TL curves may be understood in terms of the wavelengths,

which may be computed from Eq. (14). Fig. 9 presents the

wavelengths of each wave in the anisotropic melamine foam

for two material coordinate rotations, b ¼ ½p=4; 3p=4� rad, as

a function of frequency for a plane wave under oblique inci-

dence. For both material rotations, the wavelength difference

between waves of the same nature is negligible relative to

the wavelengths. Therefore, Fig. 9 is representative of the

wavelengths in both material coordinate system rotations.

Assuming an incident wave at an angle h1 in a multilayered

system with a confined poroelastic core, standing waves may

FIG. 7. Wave contributions of the waves in the anisotropic core and of the waves in the closest isotropic equivalent core. (a) f = fLF = 195.7 Hz (left)

Multilayered panel with anisotropic porous core, (right) with closest isotropic equivalent core, under normal incident acoustic excitation. (b) f¼ fHF¼ 792.4

Hz (left) Multilayered panel with anisotropic porous core, (right) with closest isotropic equivalent core, under oblique incident excitation.
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possibly form as the wavelengths of the waves governing the

behaviour of the system matches a multiple of the length

Lh1
¼ dcore= cosðh1Þ.
Using this relation, the horizontal solid line in Fig. 9

is calculated as 2Lh1
for h1 ¼ 45deg. The frequency where

this line coincide with the dispersion curves for the domi-

nant wave, w7, fHF, corresponds to the frequency at which

the high amplitude anti-resonance appears in the TL for

b ¼ p=4 rad, see Fig. 3(b). In contrast, for b ¼ 3p=4 rad,

this wave is not dominating the response of the system,

thus the length matching does not significantly affect the

TL.

In a similar manner, for the case under normal inci-

dence, this method allows to predict the frequency of the

fundamental resonance. As an example, for b ¼ p=4 rad this

occurs when the wavelength of w3 and w4 matches the length

8Lh1
, as seen in Fig. 10.

VI. CONCLUSION

The proposed method allows for a deep analysis of the

intrinsic mechanisms of the dynamic behaviour of confined

anisotropic poroelastic media in a semi-infinite multilayered

system. The assumed solution, based on plane wave expan-

sion and formulated according to Stroh, fills a previous lack

of computational methods for generally poroelastic aniso-

tropic media. Analysing the wave properties and the wave

contributions highlights the influence of intrinsic anisotropic

phenomena, such as shear- compression coupling related to

the material alignment, which is verified by the total kinetic

powers in the media. As a consequence, for certain material

orientations, significant anti-resonances appear in the TL

curve.

Furthermore, the dynamic response exhibits a strong

dependence on the material orientation of fully anisotropic

porous materials, with significant frequency shifts in the fun-

damental resonance. These are shown to be related to the

variation of mechanical compression moduli. The analysis

shows that these variations induce a shift of the geometrical

coincidence frequency of a set of dominant waves in the ani-

sotropic porous medium.

The method is generally applicable to arbitrary multilay-

ered configurations with mixed coupling conditions under ar-

bitrary acoustic plane wave excitation.
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